31 research outputs found

    Non-Bayesian Post-Model-Selection Estimation as Estimation Under Model Misspecification

    Full text link
    In many parameter estimation problems, the exact model is unknown and is assumed to belong to a set of candidate models. In such cases, a predetermined data-based selection rule selects a parametric model from a set of candidates before the parameter estimation. The existing framework for estimation under model misspecification does not account for the selection process that led to the misspecified model. Moreover, in post-model-selection estimation, there are multiple candidate models chosen based on the observations, making the interpretation of the assumed model in the misspecified setting non-trivial. In this work, we present three interpretations to address the problem of non-Bayesian post-model-selection estimation as an estimation under model misspecification problem: the naive interpretation, the normalized interpretation, and the selective inference interpretation, and discuss their properties. For each of these interpretations, we developed the corresponding misspecified maximum likelihood estimator and the misspecified CrameËŠ\acute{\text{e}}r-Rao-type lower bound. The relations between the estimators and the performance bounds, as well as their properties, are discussed. Finally, we demonstrate the performance of the proposed estimators and bounds via simulations of estimation after channel selection. We show that the proposed performance bounds are more informative than the oracle CrameËŠ\acute{\text{e}}r-Rao Bound (CRB), where the third interpretation (selective inference) results in the lowest mean-squared-error (MSE) among the estimators.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Widely-Linear MMSE Estimation of Complex-Valued Graph Signals

    Full text link
    In this paper, we consider the problem of recovering random graph signals with complex values. For general Bayesian estimation of complex-valued vectors, it is known that the widely-linear minimum mean-squared-error (WLMMSE) estimator can achieve a lower mean-squared-error (MSE) than that of the linear minimum MSE (LMMSE) estimator. Inspired by the WLMMSE estimator, in this paper we develop the graph signal processing (GSP)-WLMMSE estimator, which minimizes the MSE among estimators that are represented as a two-channel output of a graph filter, i.e. widely-linear GSP estimators. We discuss the properties of the proposed GSP-WLMMSE estimator. In particular, we show that the MSE of the GSP-WLMMSE estimator is always equal to or lower than the MSE of the GSP-LMMSE estimator. The GSP-WLMMSE estimator is based on diagonal covariance matrices in the graph frequency domain, and thus has reduced complexity compared with the WLMMSE estimator. This property is especially important when using the sample-mean versions of these estimators that are based on a training dataset. We then state conditions under which the low-complexity GSP-WLMMSE estimator coincides with the WLMMSE estimator. In the simulations, we investigate two synthetic estimation problems (with linear and nonlinear models) and the problem of state estimation in power systems. For these problems, it is shown that the GSP-WLMMSE estimator outperforms the GSP-LMMSE estimator and achieves similar performance to that of the WLMMSE estimator.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl
    corecore